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Abstract

The dynamics of spin 3/2 systems is analyzed using the density matrix theory of relaxation. By using the superoperator formal-
ism, an algebraic formulation of the density matrix�s evolution is obtained, in which the contributions from free relaxation and RF
application are easily factored out. As an intermediate step, an exact form for the propagator of the density matrix for a spin 3/2
system, in the presence of static quadrupolar coupling, inhomogeneous static magnetic field, and relaxation is demonstrated. Using
this algebraic formulation, exact expressions for the behavior of the density matrix in the classical one-, two-, and three-pulse exper-
iments are derived. These theoretical formulas are then used to illustrate the bias introduced on the measured relaxation parameters
by the presence of large spatial variations in the B0 and B1 fields. The theoretical predictions are easily evaluated through simple
matrix algebra and the results agree very well with the experimental observations. This approach could prove useful for the char-
acterization of the spatial variations of the signal intensity in multiple quantum-filtered sodium MRI experiments.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The NMR behavior of spin 3/2 systems is particularly
interesting in the context of biological systems because
of the dependence of their NMR signal on the electrical
and structural properties of the biological microenviron-
ment. This dependence has been exploited in the context
of multiple quantum-filtered (MQF) sodium NMR
experiments for the study of ion fluxes during ischemia
experiments and for the identification of neoplastic
changes in human tissue [1,2]. Imaging extensions of
these NMR techniques, although highly desirable, are
not as common in the literature because of the low con-
centration of sodium in human tissue and the inherent
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challenges involved in the fast spatial encoding of the so-
dium NMR signal [3].

Fortunately, the development of efficient spatial
encoding techniques in MRI [4] has allowed the genera-
tion of sodium images in times that are adequate for
practical use in humans (data acquisition time less than
10 min). Extensions of these techniques have also been
used to provide the first demonstration of in vivo
MQF sodium MRI techniques in humans [5,6]. The rou-
tine application of MQF techniques for the non-invasive
diagnosis and monitoring of pathology in humans, how-
ever, requires a more thorough understanding of the
dependence of this novel image contrast on hard-to-con-
trol spatial variations in experimental parameters such
as the B1 field and the B0 field. Such understanding
can only be attained through a proper description of
the behavior of the spin system for arbitrary values of
the aforementioned experimental parameters.

The standard theoretical approach for describing
the spin dynamics in the presence of non-negligible
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relaxation behavior is based on theRedfield equations [7].
Analytic solutions for the Redfield equations can be
obtained by reducing the Redfield equations to a system
of linear differential equations in a suitably chosen basis
of quantum mechanical operators. These approaches,
however, do not reveal inherent factorizations of the
solution. Such factorizations are attractive for practical
use because of the natural separation they provide for
the effects of the experimental parameters on the signal.

In this work, we demonstrate that by using the super-
operator formalism [8], the solution to the Redfield
equations can be reduced to a purely algebraic calcula-
tion in which the coherence pathways leading to the
measured signal can be easily identified. This approach
offers two additional advantages. First, each pathway
contribution can be expressed as a product of simple
terms representing the succession of RF pulses and
RF-free evolutions that is typical of pulsed MQF exper-
iments. Second, the associated expressions are con-
structed in a basis-free form.

The paper starts by reviewing many of the relevant
properties of a spin 3/2 system in the superspace repre-
sentation. The superspace formulation of the Redfield
equations is then presented and used to construct the
propagator for the spin system�s evolution in the ab-
sence of the RF field. This is followed by a description
of the RF excitation in the superoperator space. The
superspace formalism is then used to derive the expres-
sions for the time dependence of the NMR signal for
the classical one-, two-, and three-pulse NMR experi-
ments. These expressions are then used to model the
experimentally acquired signals from agar gels phan-
toms, because such gels offer the isotropic, slow fluctuat-
ing environment necessary for bi-exponential relaxation
behavior of sodium. The anisotropic case, while con-
tained in the theoretical description, it is not experimen-
tally investigated in this work. The paper concludes with
a discussion of the advantages and potential limitations
of the proposed techniques.
2. Theory

2.1. The spin 3/2 superspace

The quantum mechanical description of isolated 3/2
spins is constructed in the Hilbert space H associated
with the j = 3/2 irreducible representation of the rota-
tion group. In this space of dimension N = 4, the natural
basis is the angular momentum basis {|jmæ} with j = 3/2,
m = �3/2, . . ., 3/2. In the Hilbert space description, the
pure states are described as four dimensional vectors,
while the mixed states are described by matrices.

The Liouville representation of quantum mechanics
is introduced to treat both types of states in a common
fashion. In this representation, the states (pure or
mixed) are described as self-adjoint, positive-defined
operators with unit trace [8]. Due to the finite dimen-
sionality of H, both the state space and the observable
space (the space of bounded operators acting on H)
can be embedded in the linear space of N · N matrices.
Following [9], this N2 dimensional space is called super-
space (or Liouville space) and is denoted S. The elements
of S are sometimes referred to as supervectors.

In superspace, the double ‘‘ket’’ |Oææ and double
‘‘bra’’ ÆÆO| denote the N2 dimensional vectors describing
the operator �O� and its hermitic conjugate �O��, respec-
tively. The Liouville space becomes an unitary space
when it is equipped with the natural inner product [9]

hhAjBii � TrfAyBg: ð1Þ
The linear operators acting on S are called superopera-
tors. A special class of superoperators is defined by the
operation of taking the commutator. The derivation
with respect to O [9], is denoted using the corresponding
bold faceO : S ! S, and is acting on arbitrary operators
B as the commutator

OjBii ¼ jCii with C ¼ ½O;B�: ð2Þ
For the particular case of the Hamiltonian, the associ-
ated commutator superoperator is the Liouvillian,
which is denoted by L.

From an algebraic point of view, the superspace is
associatedwith the direct product of two j = 3/2 represen-
tations of the rotation group. The product reduces to a di-
rect sum of representations labeled with principal
quantum numbers l = 0,1,2,3. Therefore, the quantum
mechanical operators can be expanded in terms of the
normalized spherical irreducible tensor (SIT) operators
Tlm, l = 0,1,2,3,m = �l, . . .l, [8,10]. For the sake of sim-
plicity, the notations jlmii � jT lmii; hhlmj � hhT y

lmj are
used. The SIT�s satisfy

JZ jlmii ¼ mjlmii;

hhlmjklii ¼ dlkdml;
X3
l¼0

Xl
m¼�l

jlmiihhlmj ¼ 116:
ð3Þ

The decomposition of general operators and superoper-
ators in terms of SIT�s can be written:

jBðtÞii ¼
X
l;m

jlmiihhlmjBðtÞii;

B ¼
X
k;l

X
l;m

jlmiihhlmjBjkliihhklj
ð4Þ

with the coefficients being given by the traces:

hhlmjBii ¼ TrfT y
lmBg;

hhlmjBjklii ¼ TrfT y
lm½B; T kl�g:

ð5Þ

The axial symmetry, translated in the commutation
of a given superoperator with the superoperator JZ,
has important implications for the matrix elements of
the superoperator, and it is used extensively in this paper
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hhlmj½B; JZ �jklii ¼ 0 ) hhlmjBjklii ¼ dmlhhlmjBjkmii:
ð6Þ

From here, the general representation of a superopera-
tor, Eq. (4), is simplified; in terms of its reduced matrix
elements Bm

lk � hhlmjBjkmii it reads

B ¼
X3
m¼�3

X3
l¼jmj

X3
k¼jmj

jlmiiBm
lkhhkmj: ð7Þ

Grouping the terms with the same magnetic quantum
number

B ¼ j00iiB0
00hh00j þ

X3
l¼1

X3
k¼1

jl0iiB0
lkhhk0j þ

X3
m¼1

X3
l¼m

�
X3
k¼m

jlmiiBm
lkhhkmj þ jl;�miiB�m

lk hhk;�mj
� �

;

ð8Þ
one notes that any superoperator, commuting with the Z
component of the angular momentum superoperator,
has a block diagonal structure in the SIT basis.

B ¼ blockdiag

�ðB0
00 Bð0Þ Bð1Þ Bð2Þ Bð3Þ Bð�1Þ Bð�2Þ Bð�3ÞÞ

BðkÞ ¼
Bk
11 Bk

12 Bk
13

Bk
21 Bk

22 Bk
23

Bk
31 Bk

32 Bk
33

0B@
1CA; k ¼ 0;�1;

Bð�2Þ ¼ B�2
22 B�2

23

B�2
32 B�2

33

 !
; Bð�3Þ ¼ B�3

33

� �
: ð9Þ

The component l = m = 0 is purposely separated from
the larger m = 0 subspace because the non-trivial
dynamics take place in the 15 dimensional space
spanned by operators with non-vanishing principal
quantum number, l „ 0. Therefore, from now on, all
references to the j = 3/2 superspace are restricted to
this fifteen dimensional space. The blocks correspond-
ing to a given magnetic number m have dimensions
d (m) = 4 � |m| for non-zero m and d (m) = 3, for
m = 0.

The block decomposition is explicitly revealed if one
defines the matrices em which have as columns the SIT
supervectors with the given m, in ascending order of
principal index l

em ¼ fj
��m��;mii; j��m��þ 1;mii � � � ; j3;miig if m 6¼ 0;

e0 ¼ fj10ii; j20ii; j30iig:
ð10Þ

In terms of the individual blocks, the decomposition
expressed by Eq. (9) is rewritten

B ¼
X3
m¼�3

emB
ðmÞeTm: ð11Þ
Based on the multiplication properties of the introduced
em matrices

eTmem ¼ 1dðmÞ�dðmÞ; eTmen ¼ 0dðmÞ�dðnÞ; ð12Þ

the computation of a function of a superoperator B is
reduced to a direct sum of functions of lower dimen-
sional matrices

f ðBÞ ¼
X3
m¼�3

emf ðBðmÞÞeTm: ð13Þ

Further simplifications can be obtained if one considers
the properties of the parity superoperator. Using the
properties of the SIT�s under inversion, the matrix ele-
ments of the parity superoperator, denoted P, are sim-
ply given by [11]

hhl;�mjPjlmii ¼ ð�Þl: ð14Þ
If an operator B commutes with the pair P, JZ further
simplifications in the matrix element�s structure in Eq.
(6) occur

½P;B� ¼ 0 ) PBP ¼ B ) hhl;�mjBjk;�mii

¼ ð�ÞlþkhhlmjBjkmii: ð15Þ

While the reduction to lower dimensions is rigorously
expressed by Eqs. (11) and (13), the notations are incon-
venient for algebraic manipulation. Therefore, a simpler
notation namely

emB
ðmÞ � emB

ðmÞeTm ð16Þ
is used in this paper.

2.2. The physical system

For most models used in biological applications, the
Liouvillian describing the spin 3/2 system is given as a
sum of four terms representing: interaction with static
magnetic field B0, static quadrupolar interaction, inter-
action with the rotating RF field B1 and a term describ-
ing quadrupolar fluctuations [12]

LLðtÞ ¼ �x0Jz þ xQT20 þ x1ðtÞJxtþu þ
X2
q¼�2

ð�ÞqT2qV2;�q:

ð17Þ
Here, the frequencies x0 = |cB0|, x1 = |cB1| are defined
by the static and RF magnetic field magnitudes, x1 is
the frequency of the applied RF field while xQ describes
the strength of residual quadrupolar interaction [13]. We
also use the convenient notation [14]

Ju ¼ Jx cosuþ Jy sinu: ð18Þ
Finally, the expressions for the quadrupolar and fluc-

tuating terms are constructed using the standard ap-
proach described in [12,13,15]. The spin 3/2 system is
interacting with an external, large system, assumed in
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thermal equilibrium at a temperature T. In the case of a
semiclassical description of relaxation, the fluctuations
V2,q are considered stochastic complex functions of time
with zero average and known correlation properties.

To distinguish between the laboratory and rotating
frame, the density matrices in the laboratory and rotat-
ing frames are denoted with the letters r and q, respec-
tively. In the laboratory frame, the Liouville–von
Neumann equation is easily cast into an explicit linear
system of equations using the superspace formulation,
that is

d

dt
jrðtÞii ¼ �iLLðtÞjrðtÞii: ð19Þ

The laboratory frame Liouvillian, Eq. (17), consists of a
sum of three deterministic terms, LL

0 ¼ �x0JZ , LL
Q ¼

xQT20, LL
RFðtÞ ¼ x1ðtÞJxtþu and the fluctuating part

FLðtÞ ¼
P

ð�ÞqT2qV 2;�qðtÞ. The first two contributions
are used to redefine the static interaction LL

S ¼ �x0J
L
Z þ

xQL
L
Q.

The transition to the rotating frame is given, accord-
ing to Eq. (A.15) from Appendix A.1, by the unitary
transformation

jrðtÞii ¼ expð�ixtJzÞjqðtÞii ð20Þ
which together with the definition of the B0 inhomogene-
ity parameter, d ” x0 � x, reduces Eq. (19) to the form

d

dt
jqðtÞii ¼ �i

 
�dJz þ xQT20 þ x1ðtÞJu

þ
X2
q¼�2

ð�Þqe�iqxtV 2;�qðtÞT2q

!
jqðtÞii: ð21Þ

Thus, to describe the dynamics of a spin 3/2 system in
a typical pulsed NMR experiment, one needs to solve
this stochastic equation in two different regimes, the free
relaxation case (when the RF field is absent) and the
hard pulse regime (in which a very strong RF field is ap-
plied). In the free relaxation case, the starting point is
the equation in the laboratory frame, where the correla-
tion functions of the fluctuations are easily computed

d

dt
jrðtÞii¼�i �x0JzþxQT20þ

X2
q¼�2

ð�ÞqT2qV 2;�qðtÞ
 !

jrðtÞii;

ð22Þ

while for the hard pulse regime when all but the RF con-
tributions are neglected, the starting equation takes its
simplest form in the rotating frame

d

dt
jqðtÞii ¼ �ix1ðtÞJujqðtÞii: ð23Þ

This last approximation of Eq. (21) assumes that the
magnitude of the applied B1 field is much larger than
the magnitudes of the off-resonance, quadrupolar and
fluctuation terms, and that the RF pulse length is much
shorter than the characteristic relaxation times of the
system.

2.3. Free relaxation

The approach to thermal equilibrium can only be ob-
tained in a full quantum mechanical description of both
the 3/2 spin system and the thermal bath. This is accom-
plished by considering the fluctuation�s amplitudes as
quantum mechanical operators acting on the Hilbert
space associated with the thermal bath.

The semiclassical theory, obtained by considering
the fluctuations as classical stochastic variables, re-
quires the ad hoc introduction of thermal equilibrium
[16]. In the high temperature case and in the presence
of a strong static magnetic field, the equilibrium den-
sity matrix takes the form of the Maxwell–Boltzmann
distribution

rEq ¼
1

Z
exp � �hx0JZ

kBT

� �
with

Z ¼ Tr exp � �hx0JZ

kBT

� �� �
:

ð24Þ

Separating the solution of the Liouville equation, Eq.
(22), into its deterministic (rD) and fluctuating (rF)
components

jrðtÞii ¼ jrDðtÞii þ jrFðtÞii; ð25Þ
the evolution towards thermal equilibrium imposes the
limit condition

lim
t!1

rDðtÞ ¼ rEq: ð26Þ

Due to the strong static magnetic field assumption, the
dynamical shift contributions are negligible, and the
deterministic component of the density matrix satisfies
the differential equation (16)

d

dt
jrDðtÞii ¼ �iLL

SjrDðtÞii � RðjrDðtÞiiÞ: ð27Þ

The relaxation function, a linear function in the density
matrix, is proved to satisfy the relation R(rEq) = 0, in
accordance with the Boltzmann form of thermal equilib-
rium. In the case of high temperatures, in pulse NMR
experiments, the difference rD(t) � rEq can be assumed
to be of first order in �hx0/kBT. By neglecting terms of
second order in �hx0/kBT (violating, in this order, the de-
tailed balance relations) Eq. (27) is written [16]

d

dt
ðjrDðtÞii � jrEqiiÞ ¼ �iLL

SðjrDðtÞii � jrEqiiÞ

� RðjrDðtÞii � jrEqiiÞ: ð28Þ

The relaxation superoperator, R, is constructed in
terms of the static Liouvillian as the average over fluctu-
ations. The steps involved in this derivation are well
known, [17] here the derivation is briefly exposed in
superspace language. First, the differential equation
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involving the full density matrix (deterministic and fluc-
tuating part) [22] is rewritten in interaction picture in re-
spect with the static Liouvillian

d

dt
jr0ðtÞii¼�iF0ðtÞjr0ðtÞii

F0ðtÞ¼ expð�iLL
StÞFLðtÞexpðiLL

StÞ jr0ðtÞii¼ expð�iLL
StÞjrðtÞii:

ð29Þ

Second, the differential equation is converted to the inte-
gral representation

jr0ðtÞii ¼ jr0ð0Þii � i

Z t

0

dt1F
0ðt1Þjr0ð0Þii �

Z t

0

dt1

�
Z t1

0

dt2F
0ðt1ÞF0ðt2Þjr0ðt2Þii: ð30Þ

The averaging over fluctuations, denoted by Æ æ, fol-
lowed by the time derivative reduces the former expres-
sion to a mixed integral-differential equation (the
fluctuations have zero mean, therefore the term linear
in fluctuations disappear)

d

dt
jr0

DðtÞii ¼ jr0
Dð0Þii �

Z t

0

dt2hF0ðtÞF0ðt2Þijr0
Dðt2Þii

�
Z t

0

dt2hF0ðtÞF0ðt2Þjr0
Fðt2Þiii: ð31Þ

The last term is neglected; in the second term, the
assumption of short correlation time of fluctuations al-
lows the replacement of the density matrix at integration
point t2 with the value at the moment t

d

dt
jr0

DðtÞii ¼ �
Z t

0

dshF0ðtÞF0ðsÞijr0
DðtÞii: ð32Þ

Returning to the laboratory frame

d

dt
jrDðtÞii ¼ �iLL

SjrDðtÞii � RðtÞjrDðtÞii ð33Þ

with the time dependent operator

RðtÞ ¼
Z t

0

dshFLðtÞ expðiLL
Sðt � sÞÞFLðsÞ

� expð�iLL
Sðt � sÞÞi: ð34Þ

For weak quadrupolar interactions the static Liouvil-
lian is dominated by the B0 contribution in the exponen-
tials and we thus obtain

RðtÞ ¼
Z t

0

dshFLðtÞ expð�ix0JZðt � sÞÞFLðsÞ

� expðix0JZðt � sÞÞi: ð35Þ

By using the form of the fluctuations, FL (t) =
P

(�)q

T2qV2,�q(t), the form imposed by the axial symmetry
for the correlation functions

hV 2;kðt1ÞV 2;qðt2Þi ¼ ð�1Þqdk;�qJ kðt1 � t2Þ; ð36Þ
and the transformation of the SIT superoperators under
rotations (A.11)
expð�ix0JZðt � sÞÞT2q expðix0JZðt � sÞÞ ¼ eix0qðt�sÞT2q;

ð37Þ
the relaxation operator is reduced to the form

RðtÞ ¼
X2
q¼�2

ð�1ÞqT2;qT2;�q

Z t

0

dsJqðt � sÞ

� expð�iqx0ðt � sÞÞ: ð38Þ

When the time dependence of the previous expression
is analyzed, it shows a very fast variation around t = 0,
attaining its limit value R(1) on a time scale of order of
the correlation time of fluctuations (much shorter than
the time scale characterizing the relaxation) As a conse-
quence, the upper limit in the integral can be replaced
with the infinity giving rise to the symmetrized spectral
functions (the anti-symmetric combinations are one
order higher in hx0/kBT) [13]

R ¼
X2
q¼�2

ð�1ÞqðT2;qT2;�q þ T2;�qT2;qÞjqðqx0Þ: ð39Þ

Finally, by performing the replacement of the density
matrix with the correct form (that a quantum mechani-
cal treatment of the bath would predict) rD � rEq, and
by taking in consideration that the equilibrium density
matrix belongs to the null space of the static Liouvillian

LL
SjrEqii ¼ 0; ð40Þ

the evolution in the absence of the RF field, is described
by a linear equation with time independent coefficients

d

dt
ðjrDðtÞii � jrEqiiÞ ¼ �ðix0Jz þ ixQT20 þ j0R0

þ j1R1 þ j2R2ÞðjrDðtÞii
� jrEqiiÞ; ð41Þ

where the individual relaxation matrices are defined by
products of superoperators associated with SITs

R0 ¼ T2;0T2;0;

R1 ¼ �ðT2;1T2;�1 þ T2;�1T2;1Þ;
R2 ¼ T2;2T2;�2 þ T2;�2T2;2:

ð42Þ

Each individual term in the relaxation superoperator
commutes with the superoperator for the Z-component
of the angular momentum

½JZ ;T2mT2;�m� ¼ ½JZ ;T2m�T2;�m þ T2m½JZ ;T2;�m�
¼ ðm� mÞT2mT2;�m ¼ 0; ð43Þ

reducing the rotating frame analog of Eq. (41) to the
form

d

dt
ðjqðtÞii � jqEqiiÞ ¼ � ðidJz þ ixQT20 þ j0R0 þ j1R1

þ j2R2ÞðjqðtÞii � jqEqiiÞ: ð44Þ
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All terms in the Liouvillian and relaxation superopera-
tor commute with P, therefore, the direct sum represen-
tation can be written (using the convenient notation
introduced by Eq. (16))
R0 ¼ðe1þ e�1ÞRð1Þ
0 þðe2þ e�2Þ12;

R1 ¼ e0R
ð0Þ
1 þðe1þ e�1Þ13þðe2þ e�2Þð12þJZÞþðe3þ e�3Þ;

R2 ¼ e0R
ð0Þ
2 þðe1þ e�1ÞRð1Þ

2 þðe2þ e�2Þ12þðe3þ e�3Þ;
LQ ¼ð�e1þ e�1ÞLð1Þ

Q þð�e2þ e�2ÞJX ;

ð45Þ

R
ð0Þ
1 ¼ 2

5

1 0 2

0 1 0

2 0 4

0B@
1CA; R

ð0Þ
2 ¼ 2

5

4 0 �2

0 1 0

�2 0 1

0B@
1CA;

R
ð1Þ
0 ¼ 1

5

3 0
ffiffiffi
6

p

0 1 0ffiffiffi
6

p
0 2

0B@
1CA; R

ð1Þ
2 ¼ 1

5

2 0 �
ffiffiffi
6

p

0 2 0

�
ffiffiffi
6

p
0 3

0B@
1CA;

L
ð1Þ
Q ¼ �1ffiffiffi

5
p

0
ffiffiffi
3

p
0ffiffiffi

3
p

0
ffiffiffi
2

p

0
ffiffiffi
2

p
0

0B@
1CA:

ð46Þ

The solution of Eq. (44) is constructed for any initial
condition, by using the forward propagator, defined by
the matrix equation

d
dtUdðxQ; j0; j1; j2; tÞ ¼ �ðidJz þ ixQT20 þ j0R0 þ j1R1

þ j2R2ÞUdðxQ; j0; j1; j2; tÞ;
UdðxQ; j0; j1; j2; 0Þ ¼ 115:

8><>:
ð47Þ

The solution of this equation is obtained through the
matrix exponential

UdðxQ; j0; j1; j2; tÞ ¼ expð�ðidJz þ ixQT20 þ j0R0

þ j1R1 þ j2R2ÞtÞ: ð48Þ

Once this quantity is computed, the evolution of the full
density matrix takes an inhomogeneous linear form, sym-
bolized here by the operation eUðtÞ� and defined by the
following equation:

jqðt2Þii ¼ eUdðt2 � t1Þ � jqðt1Þii
¼ Udðt2 � t1Þðjqðt1Þii � jqEqiiÞ þ jqEqii: ð49Þ

The inhomogeneous term emerges only in the longitudi-
nal component of the density matrix in the form of a time
dependent function denoted qrec(t), |qrec (t)ææ = (1 � Ud

(t))|qEqææ
jqðt2Þii ¼ Udðt2 � t1Þjqðt1Þii þ jqrecðt2 � t1Þii: ð50Þ
2.4. Free propagator

The closed form of the propagator is the subject of
this section. Its construction uses the axial symmetry (al-
ready explored in Section 2.1) and straightforward prop-
erties of projectors.

IfA commutes with a projector P (an operator satisfy-
ing P2 = P), then, for any analytic function f, in terms of
the projector and its complementQ = 1 � Pwe can write

f ðAÞ ¼ Pf ðPAÞ þQf ðQAÞ: ð51Þ

Specific cases are the decomposition A = PA + QA, the
exponentiation of such operators

expðaAÞ ¼ P expðaPAÞ þQ expðaQAÞ ð52Þ

and the exponentiation of a projector itself

expðaPÞ ¼ Pea þQ ¼ 1þ Pðea � 1Þ: ð53Þ

The first factorization, relating the general propagator
Ud with the on-resonance (d = 0) propagator, denoted
simply U, is obtained using the commutation of the
Liouvillian with JZ

UdðxQ; j0; j1; j2; tÞ ¼ expð�idtJZÞUðxQ; j0; j1; j2; tÞ:
ð54Þ

TheR0matrix is a projector, this fact can be verified either
from the general commutation relations, Eq. (A.12), or
from its explicit form, Eq. (45). In terms of the orthogonal
complementP0 = 1 � R0, according to Eq. (52), the com-
mutation of the Liouvillian with R0 implies

expð�tLÞ ¼ R0 expð�tR0LÞ þ P0 expð�tP0LÞ: ð55Þ
The P0 component of the propagator is computed using
mutual orthogonal projectors P0i, P0iP0j = dijP0i

P01 ¼ P0ðR1 � R2ÞðR1 � R2 þ 2Þ=8;
P02 ¼ P0ðR1 � R2ÞðR1 � R2 � 2Þ=8;
P03 ¼ P0ðR1 þ R2 � 2Þ=8;
P04 ¼ P0 � ðP01 þ P02 þ P03Þ;

ð56Þ

in terms of which the P0 component of the Liouvillian
can be written

P0L ¼ 2j1P01 þ 2j2P02 þ 2ðj1 þ j2ÞP03 þ ðj1 þ j2ÞP04:

ð57Þ
The exponentiation is obtained from (52).

P0e
�tP0L ¼P01e

�2j1tþP02e
�2j2tþP03e

�2ðj1þj2ÞtþP04e
�ðj1þj2Þt:

ð58Þ
For the R0 component, the following operators com-
muting with R0 are defined, with a = 1,2

Ka3 ¼ R0ðRa � 1Þ=2; Ka1 ¼ 2Ka3T20Ka3;

Ka2 ¼ �2iKa3Ka1:
ð59Þ

They satisfy the commutation relations of two indepen-
dent s = 1/2 spins
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½K1i;K2j� ¼ 0; ði; j ¼ 1; 2; 3Þ;
½Kb1;Kb2� ¼ iKb3; and circular permutations:

ð60Þ

Using those spin-like operators, the R0 component of
the Liouvillian can be written

R0L ¼ ðj0 þ j1 þ j2ÞR0 þ 2
X
a¼1;2

ðjaKa3 � xQKa1Þ ð61Þ

and its exponentiation reads

R0e
�tR0L ¼ e�ðj0þj1þj2ÞtR0

X
a¼1;2

Ma with

Ma ¼ exp½�2tðjaKa3 � xQKa1Þ�:
ð62Þ

The final exponentials are well known from Pauli matrix

algebra, with �a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2a � x2

Q

q
Ma ¼ MaðxQ; ja; tÞ ¼

shðt�aÞ
�a

ðjað1� RaÞ

� ixQT20ð1� RaÞ2Þ þ chðt�aÞð1� RaÞ2: ð63Þ

The final formula for longitudinal and transversal com-
ponents, in a basis-free formulation, reads

ULðj1;j2; tÞ¼P01e
�2j1tþP02e

�2j2tþP03e
�2ðj1þj2Þt;

UTðj0;j1;j2;xQ; tÞ¼ e�ðj1þj2ÞtP04þ e�ðj0þj1þj2ÞtR0

X
a¼1;2

MaðxQ;ja; tÞ:

ð64Þ
The �basis-free� syntagma used here has the meaning
that, regardless of the basis choice in the Liouville space,
once the set of SIT superoperators Tlm is constructed,
the free propagator can be obtained by mechanically fol-
lowing the succession of transformations described by
Eqs. (42), (56), (59), and (64).

One of the frequently encountered cases is the relax-
ation in isotropic environments, where xQ fi 0 simulta-
neously with j1 fi j2. In this situation, Da fi ja and, with
the auxiliary notations f ðtÞ ¼ e�tðj0þj2Þ, sðtÞ ¼ e�2tj2 , the
propagator takes the form

Uðj0; j2; j2; 0; tÞ ¼ sP0 � sð1� sÞP03

þ 2f
�
ð1þ sÞðK2

13 þ K2
23Þ

� 1

2
ð1� sÞðK13 þ K23Þ

�
: ð65Þ

Using the axial symmetry and parity considerations the
structure of the propagator is expressed in terms of four-
teen functions umlk; 0 6 m 6 k 6 l 6 3

U¼
u011 0 u031
0 u022 0

u031 0 u033

0B@
1CAe0þ

u111 u121 u131
u121 u122 u132
u131 u132 u133

0B@
1CAe1

þ
u111 �u121 u131
�u121 u122 �u132
u131 �u132 u133

0B@
1CAe�1þ

u222 u232
u232 u233

 !
e2

þ
u222 �u232
�u2 u2

 !
e�2þu333ðe3þ e�3Þ:

ð66Þ
32 33
In the case of zero quadrupolar splitting, the structure
simplifies, requiring only ten functions

U ¼

u011 0 u031
0 u022 0

u031 0 u033

0BBB@
1CCCAe0 þ

u111 0 u131
0 u122 0

u131 0 u133

0B@
1CAe1

þ
u111 0 u131
0 u122 0

u131 0 u133

0B@
1CAe�1 þ

u222 0

0 u233

 !
e2

þ
u222 0

0 u233

 !
e�2 þ u333ðe3 þ e�3Þ:

ð67Þ

Comparing this expression with Eq. (64) and the explicit
expression of the auxiliary projectors Eqs. ((A.16)–
(A.20)) the individual matrix elements are easily found,
and they are presented in Appendix A.2.

2.5. Hard pulse

After a hard RF pulse, with flip angle h and phase u
applied at a time t, the density matrix q(t+) is given in
terms of the density matrix before the pulse, q(t�), by
the formula

jqðtþÞii ¼ Pðh;uÞjqðt�Þii ¼ expðihJuÞjqðt�Þii: ð68Þ

Equivalent expressions are useful in symbolic calculations

Pðh;uÞ ¼ expð�iuJZÞ expðihJX Þ expðiuJZÞ

¼ exp �i u� p
2

	 

JZ

	 

expðihJY Þ

� exp i u� p
2

	 

JZ

	 

: ð69Þ

In the SIT basis, the matrix elements define the reduced
p functions by

hhlmjPðh;/Þjklii ¼ eiðl�mÞ/hhlmje�ihJX jklii
¼ dlke

iðl�mÞ/pmlk ðhÞ: ð70Þ

The standard notations in quantum mechanics are given
using the exponentiation of the Y component of the
angular momentum, by using the second part of Eq.
(69) the same matrix element can be expressed

hhlmjPðh;/Þjklii¼ exp iðl�mÞ /�p
2

	 
	 

hhlmje�ihJY jklii

¼ dlke
iðl�mÞ/ðiÞm�ldml

k ðhÞ;
ð71Þ

where dl
mlðhÞ are the well-known Wigner functions. The

functions used in this paper are related to the Wigner
functions by a phase

pmll ðhÞ ¼ dl
mlðhÞ exp i

p ðl� mÞ
n o

: ð72Þ



Fig. 1. Schematic representation of a N-pulse NMR experiment.
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2.6. NMR algebraic description

AgeneralNMRexperiment is realized as the repetition
of the excitation–acquisition cycle schematically depicted
in Fig. 1. The excitation consists of a sequence of hard
pulses P1, . . .,PN, with flip angles hk, phases /k followed
by delays sk. The initial delay, s0, is considered to be mea-
sured from the last excitation of the previous sequence.
Measurements are performed at times sN; whenever the
time t is mentioned, the equality t = sN is understood.

Denoting the density matrices before and after the kth
pulse as q�

k and qþ
k , the evolution of the density matrix

during the experiment is given by the chain of equations

jq�
k ii¼ eUdðsk�1Þ� jqþ

k�1ii¼Udðsk�1Þjqþ
k�1iiþ jqrecðsk�1Þii;

jqþ
k ii¼Pkðhk;/kÞjq�

k ii:
ð73Þ

As long as the inter sequence separation (i.e., s0) is con-
sidered long compared with the relaxation times, the
starting point of the previous recurrence is given by
the equilibrium density matrix (the memory of the previ-
ous excitations is lost)

jq�
1 ii ¼ jqrecðs0Þii � j10ii: ð74Þ

The measured signal is the average of the transverse
magnetization, up to a receiver phase w. For perfect
quadrature detection, this is expressed as

eiweS dð~h;~/;~sÞ ¼ eiwhh11jqðsN Þii ð75Þ
and corresponds to the superspace matrix elementeS dð~h; ~/;~sÞ ¼ hh11jeUdðsNÞ � PN

eUd

� ðsN�1ÞPN�1 . . . eUdðs1Þ
� P1jqrecðs0Þii: ð76Þ

Taking in to consideration Eq. (73), the last expression
transforms in a sum of N terms, comprising a main
(K = 0) and N � 1 residual signals (K „ 0)

eiweS dð~h;~/;~sÞ ¼
XN�1

K¼0

eiwSðKÞ
d ð~h; ~/;~sÞ; ð77Þ

where each of the sub-signals is expressed as matrix ele-
ments of a product of linear operators

SðKÞ
d ð~h; ~/;~sÞ ¼ hh11jUdðsN ÞPN ðhN ;/N Þ . . .UdðsKþ1Þ

� PKþ1ðhKþ1;/Kþ1ÞjqrecðsKÞii: ð78Þ
The property of the Kth residual to have no dependence
of the first K pulses, makes it possible to design a filter-
ing scheme in which all residual contributions are can-
celed. This class of filtered experiments, named �T2

experiments� is described in this paper, and it will be
explicitly characterized at the end of this section. For
T2 experiments, after filtering, the non-vanishing contri-
bution comes from the main signal, only, and the
relation

Sdð~h;~/;~sÞ ¼
AF

Sð0Þ
d ð~h;~/;~sÞ¼ hh11jUdðsN Þ

�PNðhN ;/NÞ . . .Udðs1ÞP1ðh1;/1Þj10ii ð79Þ

has the meaning that the equality holds after a proper
filtering.

The effect of the off-resonance irradiation can be ab-
sorbed into the RF pulse phases. The property

e�idsJZPðh;/Þ ¼ e�idsJZ e�i/JZPðh; 0Þei/JZ

¼ Pðh;uþ dsÞe�idsJZ ð80Þ

brings any of the matrix elements in Eq. (78) in the
equivalent form

hh11jUdðsN ÞPN ðhN ;/N Þ . . .UdðskÞPkðhk;/kÞjqrecðsK�1Þii
¼ hh11jUðsNÞPNðhN ;/d

NÞ . . .UðskÞPkðhk;/d
kÞ

� expð�idðsN þ . . .þ skÞJZÞjqrecðsK�1Þii
ð81Þ

with the distorted phases defined by

/d
m ¼ /m þ dðsN þ sN�1 þ . . .þ smÞ: ð82Þ

The density matrix at the right-hand side of Eq. (81) is
longitudinal, therefore

e�iaJZ jqrecðsÞii ¼ jqrecðsÞii: ð83Þ
Finally, the off resonance signal is equivalent with the on
resonance signal with distorted phases

eiwSdð~h; ~/;~sÞ ¼ eiwSð~h;~/
d
;~sÞ: ð84Þ

The reverse is also true, once the on resonance signal as
a function of the phases is known, the off resonance sig-
nal is obtained redefining the RF phases according to
Eq. (82).

The explicit dependence of the matrix element
Sð~h;~/;~sÞ on the RF phases is a prerequisite for phase cy-
cling design and it is obtained using the |lmææ basis. In



244 C. Tanase, F.E. Boada / Journal of Magnetic Resonance 173 (2005) 236–253
terms of projectors over subspaces with given quantum
magnetic numbers m, Mm ¼

P3
l¼jmjjlmiihhlmj, the prop-

agators and hard pulses can be rewritten as

UðtÞ ¼
X
m

UðtÞMm;

Pðh;/Þ ¼
X
m;l

ei/ðl�mÞMmPðhÞMl:
ð85Þ

Using this decomposition, the signal is given by the sum
over intermediate magnetic numbers

eiwSdð~h; ~/;~sÞ ¼
X
~m

eiwe�i~n~/e�id~m~sA~mð~h;~sÞ ð86Þ

with the auxiliary quantities, the ‘‘coherence-transfer
pathway’’ vector~n [18] and the ‘‘pathway vector’’~m [19]gi-
ven by

~n ¼ ðm1;m2 � m1; . . . ;mN�1 � mN�2; 1� mN�1Þ;
~m ¼ ðm1 m2 . . . mN�1 mN Þ:

ð87Þ

The summation in Eq. (86) is restricted at both ends,
m1 = �1,0,1 and mN = 1, therefore there are 3 · 7N�2

distinct terms in summation for NP 2, and a single
term for N = 1. For T2 experiments, due to the restric-
tions m1 = �1,1 and mi „ 0, only 2 · 6N�2 terms survive

eiwSdð~h;~/;~sÞ ¼
AF

X1
m1¼�1

X3
m2 ;...mN�1¼�3

eiwe�i~n~/e�id~m~sA~mð~h;~sÞ
���
mN¼1;mi 6¼0

:

ð88Þ
The complex amplitudes

A~m ¼hh11jMmNUðsN ÞMmNPðhN Þ . . .Mm1
Uðs1ÞMm1

Pðh1Þj10ii
ð89Þ

can be further expressed in terms of propagator and
hard pulse matrix elements

A~m ¼
X3

lN�1¼jmN�1j
� � �

X3
l2¼jm2j

umN
lN lN�1

ðsN ÞpmNmN�1
lN�1

ðhN Þ . . . um2
l2l1

ðs2Þ

� pm2m1
l1

ðh2Þum1
l1l0

ðs1Þpm1m0
l0

ðh1Þ ð90Þ

with the constraints lN = 1, mN = 1, m0 = 0. In a com-
pact notation

eiwSdð~h; ~/;~sÞ ¼
AF

X
~m

eiwe�i~n~/e�id~m~s
X
~l>~m

U~m
~l;1
ð~sÞP~m;0

~l;1
ð~hÞ;

ð91Þ
where the following products of matrix elements are
defined

U~m
~l;k
ð~sÞ ¼

YN
a¼1

uma
lala�1

ðsaÞ; l0 ¼ k

P~m;l
~l;k

ð~hÞ ¼
YN
a¼1

pmama�1
la�1

ðhaÞ; l0 ¼ k;m0 ¼ l

ð92Þ

and the inequality ~l P ~m is understood as l P |mi|, for
each i = 1, � � �,N. When there is no possibility of confu-
sion, the short forms are used
Um1���mN�1
l1���lN�1

� U~m
~l;1
ð~sÞ � U~m

~l
;

Pm1���mN�1
l1���lN�1

� P~m;0
~l;1

ð~hÞ � P~m
~l
:

ð93Þ

The advantage of this formalism resides in the fact that
it automatically generates the coherence pathways in a
form suitable for symbolic calculation. The study of var-
ious filtering schemes can be realized without explicit
calculation of the amplitudes. The form of Eq. (91)
spells clearly the maximum amount of information that
can be extracted from such NMR experiments.

The phase cycling filtering of the signal is performed
by averaging the signal NF times, over pulses phases, /,
and receiver phases, w. The filtered signal (denoted with
superscript F) is the sum

SF ¼ 1

NF

X
~/;w

eiwSdð~h; ~/;~sÞ
n o

: ð94Þ

By applying the summation on the coherence pathways
representation, and by performing the sum over phases
first, the signal takes a form similar to the original Eq.
(86)

SF ¼
X
~m

A~mð~h;~sÞf~me�id~m~s ð95Þ

with a filtering-scheme-dependent coefficient

f~m � 1

NF

X
~/;w

eiðw�
~n~/Þ: ð96Þ

The contribution of a given pathway ~m is canceled by
the filtering provided that f~m ¼ 0. Using the results
above, the class of T2 experiments can be properly de-
fined. A T2 experiment is a filtered experiment in which
f~m vanishes whenever an intermediate mi is zero.

The connection with the NMR experiments requires,
as a supplementary step, spatial averaging (denoted Æ æ),
over a distribution of both offset values and flip angles.
For simplicity, it is assumed that the distribution of flip
angles is independent of the off resonance distribution.
The averages, denoted Æ æh and Æ æd can then be performed
separately bringing the measured signal to the form

hSFðtÞi ¼
X
~m

f~mhe�id~m~sidhA~mð~h;~sÞih

¼
X
~m

f~mhe�id~m~sid
X
~lP~m

P~m
~l
ð~hÞ

D E
h
U~m

~l
ð~sÞ: ð97Þ

Note that because the distribution of inhomogeneities is
unknown, the averages hP~m

~l
ð~hÞih as well as he�id~m~sid are

also unknown, which renders the direct fit of Eq. (97)
unreliable for the purpose of determining physical prop-
erties of the system. Further implications of this obser-
vation are discussed below.

A component, ~m, and its associated pathway, is called
‘‘echo-like’’ if the quantity

t0 ¼ �ðm1s1 þ � � � þ mN�1sN�1Þ P 0: ð98Þ
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For echo-like components, the off-resonance dependent
factor becomes exactly one at the time sN = t0 during the
measurement period. Provided that a filtering scheme
can be designed to select such a component, ~m, the di-
rect, non-B0 biased, determination of the quantity

hA~mð~h;~sÞih ¼
X
~l>~m

P~m
~l
ð~hÞ

D E
h
U~m

~l
ð~sÞ ð99Þ

is attainable, by performing a multidimensional experi-
ment. By contrast, for the non-echo components, any
measurement is biased by the effect of the B0 inhomoge-
neities. Due to B1 inhomogeneities the averages hP~m

~l
ð~hÞih

are unknown, independent quantities rendering the di-
rect fit of Eq. (99) unreliable, unless a factorization of
the flip angle dependent terms is possible.

Two strategies are possible for experimentally measur-
ing the matrix elements U~m

~l
ð~sÞ, namely, the ‘‘variable

echo’’ and ‘‘fixed echo’’ time strategies. In the ‘‘variable
echo’’ time strategy, only one, echo-like, coherence path-
way is selected. By simultaneously varying the pulse de-
lays, the quantity U~m

~l
ð~sÞ is measured for ~m~s ¼ 0, up to a

multiplicative constant. One of the cases in which the
selection of a single coherence pathway is possible is given
by maximally quantum-filtered signals, when only the
coherences with extreme values of magnetic numbers
survive

jm1j ¼ 1; jm2j ¼; . . . ;¼ jmN�1j ¼ 3; mN ¼ 1: ð100Þ
The ‘‘fixed echo’’ time strategy is based on the condition
that the position of the echo is constant

sE �
XN�1

k¼1

mksk ¼ const: ð101Þ

The signal acquired is proportional with the expression

SFðtÞ � um1
10 ðs1Þ . . . u

mN�1
lN�1lN�2

ðsN�1ÞumN
lN lN�1

ðtÞheidðt�sEÞid
ð102Þ

from where the following non-biased expression is
obtainedZ t2

t1

wðtÞSF ðtÞdt � um1
10 ðs1Þ . . . u

mN�1
lN�1lN�2

ðsN�1Þ: ð103Þ

While the specific choice of the windowing function,
w (t), is not important from the point of view of the
information provided by the experiment, it may affect
the SNR of the experiment.
Fig. 2. Schematic representation of the one-pulse NMR experiment. A hard p
time t.
From the SNR point of view it is more convenient to
acquire many components (echo and non-echo) to-
gether, therefore in the sum given by Eq. (97) destructive
interference between various components occurs. In
some special cases, as long as the cancellation is not se-
vere, and the B0 distribution can be estimated, this effect
can be corrected at the data processing stage.
3. Theoretical results

3.1. One pulse experiment

The one pulse experiment, presented schematically in
Fig. 2, is often used in NMR for calibrating the 90�
pulse. The signal measured is given, in the infinite repe-
tition time limit, by

Sdðh1;/1;w; tÞ ¼ eiwhh11jUdðtÞPðh1;/1Þj10ii
¼ eiðw�/1�dtÞu111ðtÞp101 ðhÞ: ð104Þ

The filtering scheme, based on addition-subtraction with
/1 = kp,w = kp,k = 0,1 (used to avoid DC baselines in
the collected FID) produces the signal

SF
d ðh; tÞ ¼ e�idtu111ðtÞp101 ðhÞ ¼

iffiffiffi
2

p e�idtu111ðtÞ sin h: ð105Þ

After the average over B0 and B1 fields is taken

SmacroðtÞ ¼ he�idtu111ðtÞp101 ðhÞid;h � he�idtidu111ðtÞhsin hih:
ð106Þ

The general form of the matrix element u111ðtÞ is given in
Appendix A.2.

The presence of the time dependent term Æe�idtæd
makes the direct fit of the FID in Eq. (106) unreliable
for the estimation of the actual relaxation rates, unless
special precautions are taken in preparing the sample.
Nevertheless, variations of the one pulse experiment
can be used to experimentally estimate the (in)homoge-
neity of the B1 field (the acquisition of a pulse width ar-
ray [20]).

3.2. Two pulse experiment

The schematic representation of a two-pulse NMR
experiment is presented in Fig. 3. One of the most useful
and non-trivial, applications of this generic pulse-ac-
ulse of flip angle h and phase / is applied followed by data collection at



Fig. 3. Schematic representation of the two-pulse NMR experiment. A hard pulse, with flip angle h2 and phase /2 is applied s1 seconds after an initial
pulse of flip angle h1 and phase /1. Data collection takes place at time t.
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quire structure is the description of a spin echo
experiment.

For a given separation s1 between the pulses, the
measured signal at time t = s2 is given by

eiwSdðh1;h2;/1;/2;s1; tÞ¼ eiwhh11jUdðtÞPðh2;/2Þ
�Udðs1ÞPðh1;/1Þj10ii: ð107Þ

In general, there are three distinct components: echo,
residual, and non-echo (m1 = �1,0,1, respectively)

eiwSd ¼ eiw�idtðe�ið2/2�/1Þþids1A�1 þ e�i/2A0 þ e�i/1�ids1A1Þ;
ð108Þ

where

Amðh1; h2; s1; tÞ ¼
X3
l¼1

u1l1ðtÞuml1ðs1Þp1ml ðh2Þp0m1 ðh1Þ: ð109Þ

To cancel the residual components (i.e., to obtain a T2

experiment) using phase-cycling, the following condition
has to be fulfilledX
/2;w

eiðw�/2Þ ¼ 0: ð110Þ

The pure echo component can thus be selected with a four
phase scheme, satisfying the condition above, namely

/1 ¼ �kp=2; /2 ¼ 0; w ¼ kp=2; k ¼ 0; 1; 2; 3:

ð111Þ
After averaging over flip angles (to account for spatial
inhomogeneities in the B1 field) and B0 inhomogeneities
the macroscopic signal becomes

SF;�1
macroðh1; h2; s1; tÞ ¼ he�idðt�s1ÞidhA�1ðh1; h2; s1; tÞih:

ð112Þ
Making use of the propagator property U (t + s1) =
U (t)U(s1), together with the symmetry relation u�m

lk ¼
ð�Þlþkumlk the sum-of-times matrix element

u111ðt þ s1Þ ¼ u111ðtÞu�1
11 ðs1Þ � u121ðtÞu�1

21 ðs1Þ þ u131ðtÞu�1
31 ðs1Þ
ð113Þ

can be formed, and the amplitude of the echo compo-
nent takes the form

i
ffiffiffi
2

p
A�1 ¼ sin h1 sin2 h2

2
u111ðt þ s1Þ � sin2h2u121ðtÞu121ðs1Þ

�
� 5

8
sin2h2ð1� 3 cos h2Þu131ðtÞu131ðs1Þ

�
: ð114Þ
In particular, when the B1 field is homogeneous the flip
angle can be ideally calibrated, the condition h1 = p/2,
h2 = p is then easily realized leading to the following
expression for the measured signal

SF;�1
macro

p
2
; p; s1; t

	 

¼ he�idðt�s1Þidu111ðt þ s1Þ: ð115Þ

In this ideal case, it is possible to extract the function
u111ð2tÞ by a 2D experiment in which the delay between
pulses, s1, is varied and the measurement takes place
at the time t = s1. In the general case, when the B1 is
not uniform across the sample volume, the quantity
determined by the 2D experiment is the more complex
ÆA�1(h1,h2, t, t)æh

hA�1ðh1; h2; t; tÞih ¼ sin h1sin
2 h2
2

� �
h

u111ð2tÞ

� hsin h1sin2h2ihu121ðtÞu121ðtÞ

� 5

8
hsin h1sin2h2

ð1� 3 cos h2Þihu131ðtÞu131ðtÞ: ð116Þ

For liquids, the identities u121 ¼ u131 ¼ 0 ensure the deter-
mination of u111ð2tÞ even under non-ideal conditions

SF;�1
macro;liquidsðh1; h2; t; tÞ � sin h1sin

2 h2
2

� �
h

u111ð2tÞ: ð117Þ

In the general case, the flip angle dependent contribu-
tions from u121 and u131 terms make the direct extraction
of u111 in the presence of B1 inhomogeneities impossible.
Under such conditions, the extraction of physical
parameters (relaxation rates) becomes unreliable. A sim-
ilar conclusion has already been reached by Brown and
Wimperis [21]. In Brown�s report, however, the unstable
nature of a non-linear fit to a sum of three exponentials
was described as the leading reason for the unsuitability
of a two-pulse and acquire experiment as a mean to
measure relaxation rates. Our analysis here indicates
that even if the fit was to be accurate, the biased nature
of the 90�–180� experiment in the presence of B1 inho-
mogeneities makes the estimation of relaxation rates
unreliable.

As a further example, we consider the case in
which the static quadrupolar interaction is absent.
Under such conditions, the Hahn echo experiment
produces a signal, which, at measurement time t is
proportional to
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AH
�1 ¼ sin h1sin

2 h2
2

� �
h

3

5
f 2 þ 2

5
s2

� �
� 5

8
hsin h1sin2h2

ð1� 3 cos 2h2Þih

ffiffiffi
6

p

5
f �

ffiffiffi
6

p

5
s

 !2

: ð118Þ

For this signal, the five parameter function

a
1

5
ð3e�2t=T f þ 2e�2t=T sÞ � b

6

25
ðe�t=T s � e�t=T f Þ2 þ c

ð119Þ
is the natural choice for the extraction of the relaxation
parameters with the amplitudes given by:

a ¼ sin h1sin
2 h2
2

� �
h

;

b ¼ 5

8
hsin h1sin2h2ð1� 3 cos 2h2Þih:

ð120Þ

In the ideal situation of both perfect calibration and
B1 homogeneous field b = 0. Note, however, that in
the presence of B1 inhomogeneities the calibration of
the 180� pulse only guarantees that Æsinh2æh = 0 and
the quantity 5

8
hsin h1sin2h2ð1� 3 cos 2h2Þih could be still

non-zero. A fit to the first term of Eq. (119) (the stan-
dard bi-exponential form used in the literature) will still
be biased leading to a poor determination of the under-
lying relaxation rates. The bias, reflected by the presence
of the b-term, depends on the B1 distribution in the sam-
ple, which depends in turn on the shape of the sample
and coil-sample geometry. As a result of the strong cor-
relation between the parameters obtained by non-linear
fit, the relaxation times are themselves biased.

3.3. Three pulse experiment

Using the diagram in Fig. 4, we have that the relevant
matrix element giving the signal at time t = s3, reads

eiwSdð~h;~/;~sÞ ¼ eiwhh11jUðs3ÞP3Uðs2ÞP2Uðs1ÞP1j10ii
ð121Þ

from where the decomposition in terms of coherences
reads

eiwSdð~h;~/;~sÞ ¼
X1

m1¼�1

X3
m2¼�3

eiwe�iðm1/1þm2ð/2�/1Þþð/3�/2ÞÞ

� e�idðm1s1þm2s2þs3ÞAm1m2
ð~h;~sÞ ð122Þ
Fig. 4. Schematic representation of the three-pulse NMR experiment. A har
initial two-pulse excitation has taken place (with flip angles h2 and h1 and p
with the individual amplitudes having the explicit form
(90)

Am1m2
¼
X3

la¼jmaj
u11l2ðs3Þu

m2
l2l1

ðs2Þum1
l11
ðs1Þp1m2

l2
ðh3Þpm2m1

l1
ðh2Þpm10

1 ðh1Þ

¼
X3

la¼jmaj
Um1m2

l1l2
Pm1m2
l1l2

:

ð123Þ
The classification for the terms occurring in Eq. (122)

is straightforward. For a T2 experiment, there are twelve
terms, from which, as a general rule, six are echo like.
There are exceptional situations when s2 � ks1/2,
k = 0,1, . . ., 6. When the condition s2 < s1/3 is fulfilled,
the six echoes are located at

se3ðm2Þ ¼ s1 � m2s2; m2 ¼ �3; . . . 3; m2 6¼ 0 ð124Þ
Even though the effect of the last two successive RF

pulses is equivalent to that of a single RF pulse, the
additional freedom to manipulate the relative phase be-
tween them allows the selection of a given m2 order,
therefore, reducing the number of matrix element prod-
ucts u1l1u

m
l1 entering in the summation in Eq. (123).

By selecting only the coherence pathways with
m2 = ±3 (named here ‘‘total TQ filtering’’), the corre-
sponding amplitudes are completely factored

Am1¼�1;m2¼�3ð~h;~sÞ ¼ Pm1m2
33 ð~hÞU 13

33ð~sÞ

¼ Pm1m2
33 ð~hÞu131ðs1Þu333ðs2Þu131ðs3Þ: ð125Þ

The relevant, flip angle dependent, coefficients, orga-
nized in a matrix form for clarity, are given by

P�1;�3
33

P�1;3
33

P 1;�3
33

P 1;3
33

0BBB@
1CCCA ¼ 15i

16
ffiffiffi
2

p sin h1sin
2h2sin

2h3

�c2s3
�s2c3
c2c3
s2s3

0BBB@
1CCCA

with
ca ¼ cos2 ha

2

sa ¼ sin2 ha
2

ð126Þ
When s2 < s1/3, only the components (�1,±3) give

echoes, located at s3 = s1 « 3s2. For s2 > s1/3 the ech-
oes are given by the components (�1,�3) and (1,�3).
In the most selective experiments, the individual compo-
nents are isolated. This can be realized using cycling
schemes with 10 phases
d pulse, with flip angle h3 and phase /3 is applied s2 seconds after an
hases /2 and /1, respectively). Data collection takes place at time t.
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/1 ¼ a1kp=5; /2 ¼ a2kp=5;

/3 ¼ a3kp=5; w ¼ kp; k ¼ 0; . . . ; 9
ð127Þ

with the coefficients for each component given in the fol-
lowing table

TQ�þ TQ�� TQþ� TQþþ

ðm1;m2Þ ð�1;þ3Þ ð�1;�3Þ ðþ1;�3Þ ðþ1;þ3Þ
a1 1 1 1 1

a2 2 0 0 4

a3 1 �2 1 7

ð128Þ
The selection of both echo components is realized

with the eighteen-phase scheme, TQ�

/1 ¼
p
9
k; /2 ¼

2p
9
k; /3 ¼ � p

9
k;

w ¼ kp; k ¼ 0; . . . ; 17:

ð129Þ

Finally, the simultaneous acquisition of all four TQ
components is realized with the following composite
twelve phases cycle TQ

/1 ¼
p
3
kþp

6
; /2 ¼

p
3
k�p

3
; /3 ¼ 0; w¼ kp; k¼ 0; . . . ;5

/1 ¼
p
3
kþp

6
; /2 ¼

p
3
k�p

3
; /3 ¼ 0; w¼ kpþp; k¼ 6; . . . ;11:

ð130Þ
The additional six phases, compared with [5], are

introduced to obtain a T2 experiment.
The experiments give the filtered signals, in which, for

simplicity the factor 15=ð16
ffiffiffi
2

p
Þ was dropped, and the

notations ca = cos2(ha/2), sa = sin2(ha/2) introduced in
Eq. (126) are used

S�1;3
d ¼ �ie�idðs3�s1�3s2ÞU 13

33ð~sÞ sin h1sin
2h2sin

2h3s2c3;

ð131Þ

S�1;�3
d ¼ �ie�idðs3�s1þ3s2ÞU 13

33ð~sÞ sin h1sin
2h2sin

2h3c2s3;

ð132Þ

S�1;�3
d ¼ � ie�idðs3�s1ÞU 13

33ð~sÞ sin h1sin
2h2sin

2h3

� ðe3ids2c2s3 þ e�3ids2s2c3Þ; ð133Þ

S�1;�3
d ¼ e�ids3U 13

33ð~sÞ sin h1sin
2h2sin

2h3

� feþids1 ½e�3ids2s2c3 þ e3ids2c2s3�
þ e�ids1 ½e�3ids2c2c3 þ e3ids2s2s3�g: ð134Þ

In the case in which all pulses are identical,
h1 = h2 = h3 = h, the signal simplifies to

S�1
d ¼ �ie�idðs3�s1ÞU 13

33ð~sÞsin
7h cosð3ids2Þ; ð135Þ

STQ
d ¼ e�ids3U 13

33ð~sÞsin
5h� fcos ds1 cos 3ds2

� cos h sin ds1 sin 3ds2 � i cos hðcos ds1
� sin 3ds2 þ cos h sin ds1 cos 3ds2Þg: ð136Þ
4. Methods and experimental results

Phantom experiments were performed to illustrate
the used of the proposed approach for the theoretical
description of NMR pulsed experiments. These experi-
ments were designed to illustrate the bias in the relaxa-
tion parameters that could result from variations in
the B0 and B1 field across the sample and how the pro-
posed approach can help isolate these effects during the
analysis of the signal (i.e., by identifying useful factor-
izations in the signal envelope). All experiments were
performed on a vertical bore, 7 Tesla Bruker DMX300
spectrometer (Bruker AG, Germany). The phantoms
consisted of agar gels, as such gels are known to exhibit
bi-exponential relaxation behavior due to the isotropic
slow motion experienced by the sodium ions in the agar
environment.

To obtain a strong deuterium lock signal, the gel was
prepared using D2O instead of distilled water. All chem-
icals used (10 cc D20, 0.2 g NaCl, 2 g agar powder) were
acquired from Sigma–Aldrich, St. Louis, MO. The sam-
ples were prepared by bringing the mixture close to the
boiling point while continuously mixing the NaCl and
agar using a magnetic stirring plate and an uncovered
Erlenmeyer flask. After mixing-in and dissolving the
chemicals, the mixture was allowed to cool before being
placed in 10 mm NMR tubes. The resulting samples (2)
were cylindrical in shape (10 mm diameters) and of dif-
ferent lengths. The smallest sample, which had a height
of 1 cm, was used to illustrate the effects of B0 inhomo-
geneities. The other sample had a height of 4 cm and
was used to illustrate the effects of B1 inhomogeneities.

One-, two-, and three-pulse experiments were per-
formed to verify the predictions of the model. The
one-pulse experiment data were acquired on both sam-
ples, using the same pulse sequence program. Eight
FIDs were added in each one-pulse experiment, using
a phase cycling scheme with /1 = kp, w = kp, k = 0,1.
Shimming was performed in two stages. First, the lock
signal level was maximized by modifying the shim gradi-
ents. Second, a modification of the paropt utility
shipped with the XWIN-NMR software suite was used
to maximize the amplitude of the spectral peak, by vary-
ing the shim gradients, followed by acquisition and Fou-
rier transformation of the signal. The sensitivity of this
approach is better than the one based on the lock signal.

In Fig. 5, it is presented a comparison between the
measured data (symbols) and the non-linear fit (solid
line) for the small (bullets) and large (stars) agar phan-
toms. The results indicate that the small sample is char-
acterized by larger B0 inhomogeneities within the RF
coil volume leading to an ‘‘artificial’’ shortening of the
relaxation times.

To illustrate the effects of B1 inhomogeneities across
the sample, the one-pulse experiment was performed in
a 2D fashion with the extra dimension being given by



Fig. 7. Dependence of the NMR signal from a two pulse experiment
on the inter-pulse separation for the small agar phantom (lower part)
and large phantom (upper part). Each data point corresponds to the
peak amplitude of the corresponding FID (TR = 209–285 ms, 8
averages). The solid line indicates the fit to the signal envelope using
the three terms function of the inter-pulse separation t, a (15 exp(�2t/
TFAST) + 10 exp(�2t/TSLOW)) � 6 b (exp(�t/TFAST) � exp(�t/
TSLOW))2 + c.

Fig. 5. FID and non-linear fit using the biexponential, a(6 exp(�t/
TFAST) + 4 exp(�t/TSLOW)) + b, from a one pulse experiment on
the small agar phantom (bullets) and the large agar phantom (stars).
(TR = 191 ms, 8 averages).
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the pulse length [20]. Fig. 6, presents the integral of the
measured data for the small (bullets) and large (stars)
samples as a function of the pulse length (128 values be-
tween 10 and 518 ls). Clearly, larger B1 inhomogeneities
are present in the large agar sample, this conclusion
being based on the higher degree of signal loss as the flip
angle increases (increase in pulse length).

To illustrate the theoretical findings from the two-
pulse theoretical model another set of measurements
was performed. In these two-pulse experiments, the time
delay between the pulses was increased from 0.3 to
38.4 ms (128 equal steps). Each individual FID was re-
corded with a time resolution of four microseconds
and twenty-four points in the FID averaged to obtain
an estimate of the FID intensity at the echo. This esti-
mated peak FID value was graphed as a function of
the inter-pulse delay for the small (Fig. 7, lower part)
and large (Fig. 7, upper part) agar samples.
Fig. 6. Dependence of the NMR signal on the RF pulse length for the
small (bullets) and the large (stars) sample. Each data point
corresponds to the integral of the FID (TR = 191 ms, 16 averages)
following the RF pulse with corresponding pulse width.
As expected, for the small sample the effect of B1 inho-
mogeneities is largely removed. For the large sample, the
quality of the data is not significantly enhanced.Note that
from Eq. (120) above, one measure for the size of the B1

inhomogeneities within the sample can be given by the ra-
tio b/a, which can be obtained from the best fit to the func-
tion að3e�2t=TF þ 2e�2t=T SÞ=5� bðe�t=T S � e�t=TFÞ2=25þ c.
For the small sample (homogeneous B1) this ratio yields
b/a = 0.11 while for the large sample (inhomogeneous
B1) b/a = 0.34.

The variable echo three-pulse experiment is demon-
strated next using the ten phase cycle from Eq. (128).
Choosing to select only the (�1,�3) component, an
echo is formed and a non-biased 2D experiment is pos-
sible. The preparation delay is varied between 0.2 and
51.2 ms, in 256 equidistant steps and twenty FIDs are
averaged for each delay (the FIDs are acquired with
a time resolution of 8 ls and 80 points are used in
the estimation of the peak). The results of this experi-
mental procedure are presented in Fig. 8 as the lower
and upper parts of the plot, for the small and large
agar samples, respectively. Taking in consideration that
the echo forms at the measurement moment
t = s1 + 3s2, the fitting function, as given by the Eq.
(132), in the absence of static quadrupolar interaction
is

f ðtÞ ¼ au131ðt � 3s2Þu131ðtÞ

¼ a exp � t � 3s2
T S

� �
� exp � t � 3s2

T F

� �� �
� exp � t

T

� �
� exp � t

T

� �� �
:

S S



Fig. 8. Dependence of the NMR signal from a three pulse experiment
on position of the echo (a function of the inter-pulse delay) for the
small (lower part of the plot) and large (upper part of the plot) agar
phantom. Each data point corresponds to the amplitude of the echo
(TR = 157–259 ms, 20 averages). The solid line indicates the fit to the
signal envelope, as described in text.

Fig. 9. Dependence of the integral of NMR signal from a three pulse
experiment on the TQ evolution time, for the small agar phantom
(lower part) and large agar phantom (upper part). Each data point
corresponds to the time integral of the corresponding FID (TR = 217–
282 ms, 10 averages). The solid line indicates the fit to the signal
envelope.
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Finally, the fixed echo experiment was performed
using a ten-phase cycle, selecting this time the (�1,3)
echo. The evolution delay was varied between 0.032
and 16.352 ms in 256 equidistant steps. The preparation
delay was kept three times larger than the evolution
time, ensuring the fixed echo location condition dis-
cussed above. The time-integral of the FIDs (estimated
after discarding the first ten points) are shown versus
the preparation time, for the small and large agar sam-
ples, together with their best fit (solid lines), in Fig. 9
(lower and upper part, respectively). By inspecting the
formula Eq. (131), together with the imposed restriction
s1 = 3s2, the fit function is obtained as

f ðtÞ ¼ au131ð3s2Þu331ðs2Þ

¼ a exp � 3s2
T S

� �
� exp � 3s2

T F

� �� �
exp � s2

T S

� �
:

5. Discussion

The use of the Liouville representation is well known
in a broad area of physical applications. Since its first
applications in pressure broadening phenomena, the for-
malism has been viewed as a convenient tool for deriv-
ing in a compact form the fundamental equations
describing relaxation processes. Because NMR applica-
tions involve systems with few degrees of freedom, the
Liouville representation could be used effectively in this
context to obtain compact results. In this work, this ap-
proach is demonstrated for the relaxation of 3/2 spin
systems in the presence of quadrupolar fluctuations.
The first quantity of interest, the free propagator was
constructed in a purely algebraic formulation as the
exponential of the Liouvillian.
Themain advantage of the superspace formalism in the
context of spin 3/2 systems is that it yields the expression
for the NMR signal as a sum over coherence pathways
where all calculations are reduced to simple matrix multi-
plications (88). From this algebraic representation, the
signal formula can be easily factored out as the product
of four different components accounting for the effects
of, RF amplitudes, RF phases, and B0 and B1 inhomoge-
neities. One important implication of this factorization is
that the problem of determining accurate relaxation rates
could be easily analyzed and, in particular, potential pit-
falls and useful strategies could be derived.

The experimental results clearly demonstrated that
the ubiquituous one-pulse experiments could produce
reliable parameters only when carefully controlled
experimental settings are considered and that, further-
more, for samples of irregular shape the effects of the
spatial averaging for the B0 and B1 variations across
its volume could lead to significant biases. These find-
ings have strong implications for in vivo applications
since for in vivo experiments the sample preparation is
often outside of the experimenter�s control. The two-
pulse experiments, although more robust in nature, were
also found to suffer from the effects of non-perfect spa-
tial distributions in the B0 and B1 fields.

The three-pulse experiment was found to be the better
choice for designing a non-biased experiment. Using a
maximally filtered experiment, the amplitude of the signal
is factored into a product of three terms, depending onB1,
B0 and the relaxation properties, respectively. This obser-
vation was used to construct two classes of experiments,
named here as variable and, fixed echo time experiments,
respectively. These experimental designs were found to
yield similar results and, in particular, the fixed echo
experiments were found to have a signal to noise ratio
advantage because the analysis of the data involves the
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integral of the FID (in the variable echo experiments only
the amplitude of the echo is measured). This advantage,
however, could be compromised when in the presence of
large B0 inhomogeneities since under such conditions
the FID decays rapidly as the measurement time gets fur-
ther away from the echo position.
6. Conclusions

In this work, the usefulness of Liouville space repre-
sentation in the study of relaxation has been demon-
strated. This representation has been shown to be
attractive not only because of its compact and elegant
presentation of the theory, but also because it is an effec-
tive approach for the derivation of computationally effi-
cient results. Results derived using this formalism were
used to illustrate the potential biases in measured relax-
ation rates that could develop when measurements are
performed in the presence of large B0 inhomogeneities.
Appendix A

A.1. Superspace and spherical irreducible tensors

The simplest basis in superspace is given by the set of
direct products of pure states, |jmæÆjn|, denoted using a
convenient notation introduced in [22], |mn�ææ. The
decomposition of the identity in H provides the repre-
sentation of any operator in terms of its matrix elements

O ¼
Xj
m¼�j

Xj
n¼�j

jjmihjmjOjjnihjnj

¼
Xj
m¼�j

Xj
n¼�j

hjmjOjjniðjjmihjnjÞ; ðA:1Þ

which is rewritten in superspace language, as the decom-
position of the associated supervector

jOii ¼
Xj

m;n¼�j

hjmjOjjnijmnyii: ðA:2Þ

By convention, the hermitic conjugate of an operator

Oy ¼
Xj
m¼�j

Xj
n¼�j

ðhjmjOjjniÞ	ðjjmihjnjÞy; ðA:3Þ

corresponds to the ‘‘bra’’ in superspace,

hhOj �
Xj

m;n¼�j

hhmnyjðhjmjOjjniÞ	: ðA:4Þ

This formula reaffirm the fact that the ‘‘bra’’ is the
Liouville space hermitic conjugate of the corresponding
‘‘ket.’’ The natural inner product is consistent with the
‘‘bra’’–‘‘ket’’ convention
hhmnyjOii ¼ hjnjOjjmi and hhOjmnyii
¼ ðhjmjOjjniÞ	: ðA:5Þ

Using the 3j Wigner coefficients
j k l
m n p

� �
, the

SITs can be written explicitly in terms of the direct prod-
uct of basis for H (23)

jkqii ¼
X

jmj<j;jmþqj<j

ð�1Þj�ðmþqÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k þ 1

p

�
k j j

q m �ðmþ qÞ

� �
jj;mþ qihjmj:

ðA:6Þ

For the SIT operators, their associated superopera-
tors are then given by the sum

Tlm ¼
X3
k¼1

Xk
q¼�k

X3
k0¼jmþqj

ð�Þ2j�m�q
�ðl; k; k0Þ

�
l k k0

m q �m� q

� �
jk0;mþ qiihhkqj;

ðA:7Þ

where the modified 9j Wigner symbol has been intro-
duced for the sake of simplicity

�ðl; k; k0Þ ¼ ½ð�Þlþkþk0 � 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2k þ 1Þð2k0 þ 1Þ

q
�

l k k0

j j j

� �
: ðA:8Þ

From the Jacobi identity

½A; ½B;C�� þ ½B; ½C;A�� þ ½C; ½A;B�� ¼ 0; ðA:9Þ
the fact that the associated superoperator of a commu-
tator is the commutator of the corresponding superoper-
ators is obtained

½A;B�jCii ¼ ½A; ½B;C�� � ½B; ½A;C�� ¼ ½½A;B�;C�: ðA:10Þ
As a consequence, the SIT superoperators satisfy with

the angular momentum superoperators, the same com-
mutation relations as their operator counterparts

½JZ ;Tlm� ¼ mTl;k;

½J�;Tlm� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ � mðm� 1Þ

p
Tl;m�1:

ðA:11Þ

The structure constants are directly related with the
superoperator matrix elements

½T lm; T kl� ¼ Tlmjklii ¼
X

T k;mþlhhk;mþ ljTlmjklii
ðA:12Þ

and they are shared with their superoperators
counterparts

½Tlm;Tkl� ¼
X

Tk;mþlhhk;mþ ljTlmjklii: ðA:13Þ

The most important property of the associated
superoperator A of a ‘‘standard’’ operator A in NMR
applications is obtained as a direct consequence of the
Baker–Hausdorff–Campbell formula
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expðAÞB expð�AÞ ¼
X1
k¼0

1

k!
½A; ½. . . ½A;B���: ðA:14Þ

Recognizing in the RHS the exponential series for the
superoperator A we have

expðAÞjBii ¼ j expðAÞB expð�AÞii: ðA:15Þ
A.2. Appendix propagator matrix elements

Using the short form introduced in (16), the auxiliary
projectors are given by

P01 ¼
1

5

1 0 2

0 0 0

2 0 4

0B@
1CAe0; P02 ¼

1

5

4 0 �2

0 0 0

�2 0 1

0B@
1CAe0;

P03 ¼
0 0 0

0 1 0

0 0 0

0B@
1CAe0;

ðA:16Þ

P04 ¼ ðe1 þ e�1Þ
1

5

2 0 �
ffiffiffi
6

p

0 0 0

�
ffiffiffi
6

p
0 3

0B@
1CAþ ðe3 þ e�3Þ;

ðA:17Þ

K11 ¼ ðe�2 � e2Þ
1

2

0 1

1 0

� �
;

K12 ¼ ðe�2 � e2Þ
1

2

0 �i

i 0

� �
;

K13 ¼ ðe2 þ e�2Þ
1

2

1 0

0 �1

� �
;

ðA:18Þ

K21 ¼
ffiffiffi
5

p

10

0
ffiffiffi
3

p
0ffiffiffi

3
p

0
ffiffiffi
2

p

0
ffiffiffi
2

p
0

0B@
1CAðe�1 � e1Þ;

K22 ¼
i
ffiffiffi
5

p

10

0
ffiffiffi
3

p
0

�
ffiffiffi
3

p
0 �

ffiffiffi
2

p

0
ffiffiffi
2

p
0

0B@
1CAðe1 � e�1Þ;
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K23 ¼
�1

10

3 0
ffiffiffi
6

p

0 �5 0ffiffiffi
6

p
0 2

0B@
1CAðe1 þ e�1Þ: ðA:20Þ

With the notations

Ca ¼ e�ja t coshðt�aÞ
Sa ¼ e�ja t sinhðt�aÞ

�a

(
; �a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2a�x2

Q

q
;sðtÞ¼ e�2j2 t; f ðtÞ¼ e�ðj0þj2Þt;

ðA:21Þ
the matrix elements of the free propagator are displayed
here, together with their values in the limit case j1 fi j2
and xQ fi 0
u011 ¼ 1
5
e�2j1 tþ 4

5
e�2j2t ! sðtÞ u222 ¼ e�ðj0þj2ÞtðC1� j1S1Þ! f ðtÞsðtÞ

u022 ¼ e�2ðj1þj2Þt ! s2ðtÞ u232 ¼�ixQe
�ðj0þj2ÞtS1 ! 0

u033 ¼ 4
5
e�2j1 tþ 1

5
e�2j2t ! sðtÞ u233 ¼ e�ðj0þj2ÞtðC1þ j1S1Þ! f ðtÞ

u031 ¼ 2
5
ðe�2j1 t� e�2j2tÞ! 0 u333 ¼ e�ðj1þj2Þt ! sðtÞ

ðA:22Þ

u111 ¼
2

5
e�ðj1þj2Þtþ3

5
e�ðj0þj1ÞtðC2þ j2S2Þ!

2

5
sðtÞþ3

5
f ðtÞ

u121 ¼�i

ffiffiffi
3

5

r
e�ðj0þj1ÞtxQS2 ! 0

u131 ¼�
ffiffiffi
6

p

5
e�ðj1þj2Þtþ

ffiffiffi
6

p

5
e�ðj0þj1ÞtðC2þ j2S2Þ!

ffiffiffi
6

p

5
ðf ðtÞ� sðtÞÞ

u122 ¼ e�ðj0þj1ÞtðC2� j2S2Þ! f ðtÞsðtÞ

u132 ¼�i

ffiffiffi
2

5

r
e�ðj0þj1ÞtxQS2 ! 0

u133 ¼
3

5
e�ðj1þj2Þtþ2

5
e�ðj0þj1ÞtðC2þ j2S2Þ!

3

5
sðtÞþ2

5
f ðtÞ

ðA:23Þ
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